tech beamers
  • Viral Tips šŸ”„
  • Free CoursesTop
  • TutorialsNew
    • Python Tutorial
    • Python Examples
    • C Programming
    • Java Programming
    • MySQL Tutorial
    • Selenium Tutorial
    • Selenium Python
    • Playwright Python
    • Software Testing
    • Agile Concepts
    • Linux Concepts
    • HowTo Guides
    • Android Topics
    • AngularJS Guides
    • Learn Automation
    • Technology Guides
    • Python
    • C
    • Java
    • MySQL
    • Linux
    • Web
    • Android
    • AngularJS
    • Playwright
    • Selenium
    • Agile
    • Testing
    • Automation
    • Best IDEs
    • How-To
    • Technology
    • Gaming
    • Branding
  • Interview & Quiz
    • SQL Interview
    • Testing Interview
    • Python Interview
    • Selenium Interview
    • C Sharp Interview
    • Java Interview
    • Web Development
    • PHP Interview
    • Python Quizzes
    • Java Quizzes
    • Selenium Quizzes
    • Testing Quizzes
    • HTML CSS Quiz
    • Shell Script Quizzes
    • Python Interview
    • SQL Query Interview
    • SQL Exercises
    • Selenium Interview
    • Playwright Interview
    • QA Interview
    • Manual Testing
    • Rest API Interview
    • Linux Interview
    • CSharp Interview
    • Python Function Quiz
    • Python String Quiz
    • Python OOP Quiz
    • Python DSA Quiz
    • ISTQB Quiz
    • Selenium Quiz
    • Java Spring Quiz
    • Java Collection Quiz
    • JavaScript Quiz
    • Shell Scripting Quiz
  • ToolsHot
    • Python Online Compiler
    • Python Code Checker
    • C Online Compiler
    • Review Best IDEs
    • Random Letter Gen
    • Random Num Gen
    • Online Python Compiler
    • Python Code Checker
    • Python Code Quality
    • Username Generator
    • Insta Password Generator
    • Google Password Generator
    • Free PDF Merger
    • QR Code Generator
    • Net Worth Calculator
tech beamers
Search
  • Viral Tips šŸ”„
  • Free CoursesTop
  • TutorialsNew
    • Python Tutorial
    • Python Examples
    • C Programming
    • Java Programming
    • MySQL Tutorial
    • Selenium Tutorial
    • Selenium Python
    • Playwright Python
    • Software Testing
    • Agile Concepts
    • Linux Concepts
    • HowTo Guides
    • Android Topics
    • AngularJS Guides
    • Learn Automation
    • Technology Guides
  • Interview & Quiz
    • SQL Interview
    • Testing Interview
    • Python Interview
    • Selenium Interview
    • C Sharp Interview
    • Java Interview
    • Web Development
    • PHP Interview
    • Python Quizzes
    • Java Quizzes
    • Selenium Quizzes
    • Testing Quizzes
    • HTML CSS Quiz
    • Shell Script Quizzes
  • ToolsHot
    • Python Online Compiler
    • Python Code Checker
    • C Online Compiler
    • Review Best IDEs
    • Random Letter Gen
    • Random Num Gen
Follow US
Ā© TechBeamers. All Rights Reserved.
Python Advanced

Matplotlib Practice Online: Free Exercises

Last updated: Apr 20, 2025 3:13 pm
Meenakshi Agarwal
By
Meenakshi Agarwal
Meenakshi Agarwal Avatar
ByMeenakshi Agarwal
Hi, I'm Meenakshi Agarwal. I have a Bachelor's degree in Computer Science and a Master's degree in Computer Applications. After spending over a decade in large...
Follow:
No Comments
5 months ago
Share
8 Min Read
SHARE

šŸ“ Check out a comprehensive set of Matplotlib exercises and practice with our Online Matplotlib Compiler. This library is mainly used for data visualization in Python. From this tutorial, you will get some idea about – how to analyze trends, build machine learning models, and explore datasets.

Contents
  • What is Matplotlib?
    • Understanding How Matplotlib Plots Work
    • Types of Plots in Matplotlib
  • Why Use an Online Matplotlib Compiler?
  • Practical Matplotlib Exercises (Try Them Live!)
    • Exercise 1: Your First Plot – Website Traffic Trend
    • Exercise 2: Product Comparison – Bar Chart
    • Exercise 3: Data Relationships – Scatter Plot
    • Exercise 4: Data Distribution – Histogram
  • šŸŽ“ Take It Further: Advanced Practice Ideas
  • šŸŽÆ Ready to Try It Yourself?
    • Final Thoughts
Practice with online matplotlib compiler using Python

What is Matplotlib?

Matplotlib is famous for its data visualizing features. It comes as a package for Python. It includes several plot types such as bar charts, scatter plots, histograms, pie, and various other. This is how, it helps us in analyzing data, in machine learning, and helping us understand trends and patterns easily.

We have included many practical exercises in this tutorial to demonstrate the usage of Matplotlib. To compile and run them, you will need to install Python 3 and Matplotlib package.

However, with anĀ online Matplotlib compiler, you can write, test, and visualize data in seconds. No setup. No delays. Just pure coding. Let’s dive in!

Understanding How Matplotlib Plots Work

Every Matplotlib visualization consists of theseĀ core components. It is important to know these before start to dive into the exercises.

Matplotlib Core ComponentsDescription
Figure CanvasThe ā€œblank pageā€ where your plot lives
Created automatically when you importĀ matplotlib.pyplot
AxesThe actual plotting area (where lines/bars appear)
Contains the x-axis and y-axis
Data LayerYour actual plot (lines, bars, dots)
Added via commands likeĀ plot(),Ā bar(),Ā scatter()
AnnotationsText elements: titles, axis labels, legends
Added withĀ title(),Ā xlabel(),Ā ylabel()

Types of Plots in Matplotlib

The following few are a basic and commonly used plot type:

  • Bar ChartsĀ (Great for comparisons)
  • Scatter PlotsĀ (For correlations)
  • HistogramsĀ (Data distribution)
  • Pie ChartsĀ (Proportions & percentages)

Why Use an Online Matplotlib Compiler?

Matplotlib is the #1 Python library forĀ data visualization, used in analytics, machine learning, and research. But setting it up locally can be tedious.

With ourĀ free online Matplotlib compiler, you can:
āœ”Ā Plot instantly – No installations or setup.
āœ”Ā Practice anywhere – Works on all devices.
āœ”Ā Access key libraries – Matplotlib, pandas, and NumPy pre-installed.
āœ”Ā Learn faster – Experiment without breaking your local environment.

Ideal for:Ā Data scientists, students, and developers who need quick, hassle-free plotting.


Practical Matplotlib Exercises (Try Them Live!)

Let’s now learn how to use Matplotlib in Python. Please ensure either you have opened our online matplotlib compiler or press the ā€œrun codeā€ button in the top left of the coding snippets.

Exercise 1: Your First Plot – Website Traffic Trend

The purpose of this example is to make you aware of the Matplotlib core components. We’ll create a simple line plot showing monthly website visitors. Here’s what each element does:

import matplotlib.pyplot as plt  # The visualization engine

# Sample data
months = ["Jan", "Feb", "Mar", "Apr"]  # X-axis values
visitors = [1200, 1800, 2100, 1600]  # Y-axis values

# Creating the plot
plt.plot(months, visitors, 
        color="blue",  # Line color
        marker="o",    # Data point markers
        linestyle="--") # Dashed line

# Adding labels and title
plt.title("Monthly Website Visitors")  # Chart title
plt.xlabel("Month")                   # X-axis label
plt.ylabel("Visitors")                # Y-axis label

# Enhancing readability
plt.grid(True)  # Show grid lines
plt.show()      # Display the plot

šŸ‘‰ Key Learning Points

The code created the following line plot.

Matplotlib line chart in Python
  1. plt.plot() – Creates the basic line chart
  2. Customization options (color, marker, linestyle)
  3. Essential labels for clarity
  4. Grid lines for better data interpretation

Try modifying:

  • RemoveĀ linestyleĀ to get a solid line
  • ChangeĀ color="green"Ā to see immediate effect
  • Try different markers:Ā "s"Ā (square),Ā "^"Ā (triangle)

Exercise 2: Product Comparison – Bar Chart

With this exercise, you’ll learn when to use the bar chart. It is perfect for comparing discrete categories. We’ll visualize quarterly product sales:

Example: Bar Chart

import matplotlib.pyplot as plt 
products = ["Laptops", "Phones", "Tablets"]  # Categories
sales = [200, 350, 150]                      # Values

plt.bar(products, sales, 
       color=["#4CAF50", "#2196F3", "#FF5722"],  # Custom colors
       width=0.6)                                # Bar width

plt.title("Q1 Product Sales")
plt.ylabel("Units Sold (Thousands)")
plt.ylim(0, 400)  # Setting Y-axis range
plt.show()

šŸ‘‰ What’s different here?

You can see that three bars are formed in our bar chart, each reflecting a product.

Matplotlib bar chart using online Python compiler
  • plt.bar()Ā instead ofĀ plot()Ā for categorical data
  • Custom color palette using hex codes
  • ylim()Ā to control axis range
  • widthĀ parameter adjusting bar thickness

Pro Tip:Ā Add this line beforeĀ show()Ā to display exact values on bars:

for i, v in enumerate(sales):
    plt.text(i, v+10, str(v), ha='center')

Exercise 3: Data Relationships – Scatter Plot

This exercise show cases a basic correlation between two variables. Let’s examine ad spend vs. revenue:

import matplotlib.pyplot as plt 
ad_spend = [100, 200, 300, 400]  # X-axis
revenue = [150, 350, 420, 500]    # Y-axis

plt.scatter(ad_spend, revenue,
           color="red",
           s=100)  # Marker size

plt.title("Ad Spend vs. Revenue")
plt.xlabel("Advertising Budget ($)")
plt.ylabel("Revenue Generated ($)")
plt.show()

šŸ‘‰ Analysis Techniques

Matplotlib scatter plot in Python
  1. Positive correlation?Ā Points moving upwards right
  2. Outliers?Ā Points far from the general cluster
  3. No correlation?Ā Randomly scattered points

Enhancement:Ā Add a trendline with:

import numpy as np
z = np.polyfit(ad_spend, revenue, 1)
p = np.poly1d(z)
plt.plot(ad_spend, p(ad_spend), "b--")

Exercise 4: Data Distribution – Histogram

They show how numerical data is distributed – crucial for statistics and machine learning pre-processing.

import matplotlib.pyplot as plt 
ages = [22, 45, 30, 34, 28, 40, 35, 29, 33, 27, 31, 38]

plt.hist(ages, 
        bins=5,            # Number of bars
        color="purple",
        edgecolor="black", # Bar borders
        alpha=0.7)         # Transparency

plt.title("Customer Age Distribution")
plt.xlabel("Age Groups")
plt.ylabel("Number of Customers")
plt.show()

šŸ‘‰ Interpreting OUR Histogram Results

Matplotlib histogram using online Python compiler

i. Skewed Left/Right? Our data shows:

  • A short ā€œtailā€ on theĀ rightĀ (ages 44.4-50 has just 1 customer)
  • Most data clusters on theĀ leftĀ side (ages 22-38.8)

This means:

  • Our customer base isĀ younger-skewed
  • The 45-year-old is an outlier compared to others

ii. Normal Distribution? Our plot is NOT perfectly normal because:

  • No clear bell curve shape
  • Peaks at 27.6-33.2 range (5 customers)
  • Missing middle-aged customers (38.8-44.4 group is empty)

iii. Bins Matter!

WithĀ bins=5:
āœ…Ā Good:Ā Clearly shows:

  • The 27.6-33.2 age group dominates
  • The 44.4-50 group is a clear outlier

āŒĀ If you changed bins:

  • bins=2: Would hide the empty 38.8-44.4 group
  • bins=10: Might show empty bins between ages

šŸŽ“ Take It Further: Advanced Practice Ideas

āœ”Ā Add annotationsĀ (plt.annotate()) to highlight key data points.
āœ”Ā Use subplotsĀ (plt.subplots()) for side-by-side comparisons.
āœ”Ā Try themesĀ (plt.style.use('ggplot')) for professional styling.


šŸŽÆ Ready to Try It Yourself?

ClickĀ hereĀ to open our Online Matplotlib Compiler and run these examples live!

šŸ’¬Ā Which Matplotlib plot will you try first?Ā Drop a comment below! šŸ‘‡


Final Thoughts

An online Matplotlib compiler removes barriers, letting you focus onĀ what matters—mastering data visualization. Whether you’re a student, data analyst, or Python enthusiast, practicing online accelerates learning.

šŸš€ Happy Plotting!


šŸ”— Share this guideĀ with fellow coders who need a quick way to practice Matplotlib!

Related

TAGGED:Data Analysis TechniquesData ScienceMachine Learning
Share This Article
Whatsapp Whatsapp LinkedIn Reddit Copy Link
Leave a Comment

Leave a Reply

Your email address will not be published. Required fields are marked *

List of Topics

Stay Connected

FacebookLike
XFollow
YoutubeSubscribe
LinkedInFollow

Continue Reading

  • Python Memory Tricks: Optimize Your Code for Efficiency in 2025Sep 6
  • Multithreading in PythonNov 9
  • Python Socket ProgrammingFeb 26
  • Python Socket: Create Multithreaded ServerFeb 28
  • Python Socket: Create a TCP Server-ClientMar 3
  • Python Guide to Connect with MongoDBJul 28
  • How to Create Dynamic QR Code in PythonSep 16
  • Python Connect to PostgreSQL DatabaseMar 8
  • Python Random IP Address GenerationMar 5
  • Python Libraries to Connect with SQLFeb 17
View all →

RELATED TUTORIALS

Python lambda usage with examples

Python Lambda Usage

By Meenakshi Agarwal
5 months ago
generate random characters in python

Python Random Character Generation

By Meenakshi Agarwal
5 months ago
Implement a Multithreaded Python Server Using Threads

Python Socket: Create Multithreaded Server

By Meenakshi Agarwal
5 months ago
LangChain ChatBot App Tutorial for Beginners

Python LangChain: Create a Full-fledged App

By Soumya Agarwal
5 months ago
Ā© TechBeamers. All Rights Reserved.
  • About
  • Contact
  • Disclaimer
  • Privacy Policy
  • Terms of Use